DOCUMENT RESUMB ED 128 478 UD 016 225 AUTHOR Danziger, Sheldon TITLE Trends in the Level and Distribution of Income in Metropolitan Areas, 1959-1969. Discussion Paper 바다 생산하고 있는 이 그는 공항성 316-75. INSTITUTION Wisconsin Univ., Madison. Inst. for Research on Poverty. SPONS AGENCY Department of Health, Education, and Welfare, Washington, D.C.; Manpower Administration (DOL), Washington, D.C. REPORT NO IRP-DP-316-75 PUB DATE NOV 75 NOTE 20p. EDRS PRICE MF-\$0.83 HC-\$1.67 Plus Postage. DESCRIPTORS Economic Climate; *Economic Factors; Economic Opportunities; Economic Research; *Income; *Metropolitan Areas; *Poverty Research; Statistical Data; *Trend Analysis; Urban Areas; Urban Population IDENTIFIERS *Income Distribution #### ABSTRACT An overview of the level and distribution of income for a sample of Standard Metropolitan Statistical Areas (SMSAs) during the period 1959-1969, using data on pretax pretransfer incomes published by the Internal Revenue Service, is presented in this paper. Several results are described. (1) The level and distribution of income vary widely among the SMSAs. (2) A majority of the SMSAs experience an increase in inequality during the 1959-1969 period. (3) Differences among the SMSAs in both income level and degree of income inequality narrows. (4) Higher rates of growth of income are associated with smaller increases in inequality. While this paper is descriptive, the author hopes that the data set will be useful for testing theories that relate the income level and income distributions of metropolitan areas to their urban problems -- for example, whether increases in SMSA crime rates or the incidence of urban riots or urban fiscal problems can be explained by changes in the level and distribution of metropolitan area incomes. (Author/AM) ## TRENDS IN THE LEVEL AND DISTRIBUTION OF INCOME IN METROPOLITAN AREAS, 1959-1969 Sheldon Danziger November 1975 U.S. DEPARTMENT OF MEALTH, EQUCATION & WELFARE NATIONAL INSTITUTE OF EDUCATION THIS DOCUMENT MAS BEEN REPRO-OUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGIN-ATING IT POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSAFILY REPRE-SENT OFFICIAL NATIONAL INSTITUTE OF EOUCATION POSITION OR POLICY This research was supported by a U.S. Department of Labor, Manpower Dissertation Fellowship and by funds granted to the Institute for Research on Poverty by the Department of Health, Education, and Welfare pursuant to the provisions of the Economic Opportunity Act of 1964. Mark Browning and Philip Spevak provided valuable programming assistance. ### **ABSTRACT** This paper presents an overview of the level and distribution of income for a sample of Standard Metropolitan Statistical Areas during the period 1959-1969 using data on pretax pretransfer incomes published by the Internal Revenue Service. It is shown that although the degree of inequality varies widely among SMSAs, a majority experienced an increase in inequality during the period. However, there has been convergence in both the degree of inequality and the level of income across the sample. # TREN'S IN THE LEVEL AND DISTRIBUTION OF INCOME IN METROPOLITAN AREAS, 1959-1969 ### I. Introduction If personal satisfaction with living standards is based on a comparison of one's own income with the incomes of other residents of the metropolitan area, then the distribution of income as well as its level is an important indicator of the economic welfare of the area's residents. Smolensky and Gomery (1972) emphasize the importance of the level and distribution of income in the metropolitan area in an analysis of urban housing problems. Bateman and Hochman (1972, p. 346) state that the urban crisis can be traced to the dissatisfaction of the lower classes which is based on their perception that the conditions in which they live are unacceptable in relation to what they would like them to be. The problem thus posed is primarily an urban one for two reasons: (1) the poor have tended more and more to concentrate in urban areas, and (2) the disparities between income and wealth are much more obvious in urban areas where the very rich and the very poor live in physical proximity. If either of these conditions did not hold, there would be no urban crisis per se. However, neither of these papers presents data on urban area income distributions that could be used to test hypotheses. 1 This paper presents an overview of the level and distribution of income for a sample of Standard Metropolitan Statistical Areas (SMSAs) during the period 1959-1969 using data published annually by the Internal Revenue Service (U.S. Department of the Treasury). The data sources and the summary measures used to describe the data are described in the next section. In the final section, the trends in the level and distribution of income are analyzed. While this paper does not attempt to test the hypothesis that inequality in the distribution of income is a determinant of urban problems, the data presented here can be used for such a purpose in future research. ## II. The Internal Revenue Service Data The Internal Revenue Service (IRS) publishes data on the level and distribution of income for SMSAs beginning with 1959. The data are published biennially for the 125 largest SMSAs (the largest 100 until 1967), but data are available for each of the six years in the 1959-1969 period for only 86 of the SMSAs. These 86 SMSAs form the sample analyzed in this paper.² Any analysis of the degree of inequality in the size distribution of income is sensitive to the choice of income concept, unit of analysis, and population coverage. IRS data for SMSAs are available for six years in the 1959-1969 period and census data for the two endpoints. However, the differences in income concept, unit of analysis, and population coverage prevent direct comparability. 3 The IRS data forms a pretax, pretransfer distribution of tax returns, while the census data forms a pretax, posttransfer distribution of families and unrelated individuals. IRS data measure adjusted gross income for all tax returns filed. Adjusted gross income excludes transfer income, but includes realized capital gains and losses. Census money income includes cash transfers but excludes capital gains and losses. In addition, there is not a unique correspondence between income tax filing units and the Census Bureau's definition of families and unrelated individuals. Significantly, the IRS coverage is not universal since those not required to file tax returns are excluded from the data.⁴ The Gini coefficient is the measure of income inequality and the mean adjusted gross income in <u>current dollars</u> is the measure of income level used in this paper. Table 1 presents the Gini efficients for each of the six years and the percentage change in the Gini coefficient between 1959 and 1969. Table 2 presents the mean income for each year and the change in mean. Two important conclusions emerge from Tables 1 and 2. First, there is a wide variation in both the Gini coefficient and mean income for SMSAs. The average Gini coefficients range from a low of .3796 for Youngstown to .5126 for Miami; the average mean income from \$5078 in Wilkes Barre to \$7936 in San Jose. Second, only eleven of the SMSAs have exhibited a decrease in inequality during this ten-year period. In the next section, these results are analyzed. ## II. Trends in the Level and Distribution of Income The average Gini coefficient and average mean income for the SMSA sample are compared to the U.S. aggregates in Table 3. Between 1959 and 1969 the Gini coefficient for the U.S. increased by 4.8 percent, while that for the SMSA sample increased by 6.1 percent. Most of the increase in inequality occurred during the 1963-1969 economic boom. A regression of a time trend on the Gini coefficient produces the following results: 8 4 TABLE 1 : GINI COEFFICIENTS FOR EACH SMSA | SMSA | 1959 | 1961 | 1963 | 1965 | 1967 | 1969 | XCHNG | |--------------|-------------|----------------|-------|-------|----------------|--------|-------| | AKRON | .3585 | .4225 | .4037 | .4045 | 4190 | .409è | 14.23 | | ALBANY | 3991 | 4439 | 4206 | 4050 | 4279 | 4279 | 7, 24 | | ALLENTOWN | 4044 | 3929 | 4022 | 3979 | 4112 | 4269 | 5,58 | | ATLANTA | 4392 | 4451 | 4472 | 4554 | 4683 | 4687 | 6.70 | | BAKERSFIELD | 4269 | 4765 | 4280 | 4580 | 4665 | 4772 | 11.78 | | RALTIMORE | 4301 | 4304 | 4261 | 4295 | 4469 | 4416 | 2.67 | | BEAUMONT | 4213 | 4233 | 4192 | 4112 | 4296 | 4529 | 7,51 | | RIRMINGHAM | 4354 | 4293 | 4364 | 4372 | 4464 | 4414 | 1.39 | | BOSTON | 4489 | 4448 | 4471 | 4752 | 4680 | 4686 | 4.39 | | BRIDGEPORT | 3703 | 4073 | 3900 | 4481 | 4136 | 4078 | 10.10 | | BUFFALO | 4001 | 4038 | 3880 | 4124 | 4056 | 4174 | 4.32 | | CANTON | 3931 | 3833 | 3888 | 3875 | 4154 | 4633 | 17.87 | | CHARLOTTE | - | 4685 | 4641 | 4461 | 4456 | 4813 | 7.93 | | CHATTANOOGA | .4460 | | 4423 | .4465 | 4960 | 4348 | -4.55 | | | 4555 | .4489
.4308 | _ | 4451 | 4464 | 4565 | 8.57 | | CHICAGO | .4205 | • | .4412 | 4465 | .4448 | 4498 | 6.81 | | CINCINNATI | ,4211 | .4520 | .4312 | | 4385 | 4436 | 9.91 | | CLEVELAND | .4036 | .4109 | .4186 | .4389 | 4224 | 4522 | 4.73 | | COLUMBUS, O | .4318 | 4219 | 4145 | .4313 | 4818 | 4723 | 4.32 | | DALLAS | 4527 | .4736 | .4702 | .4775 | | 4721 | 28.67 | | DAVENPORT | .3669 | .3835 | .3785 | .4301 | .4549
.4242 | 4357 | 6.07 | | DAYTON | .4107 | 3975 | .4024 | .4082 | 4406 | 4578 | 7e35 | | DENVER | .4265 | .4343 | .4313 | .4357 | 4685 | 4720 | 8.55 | | DESMOINES | .4348 | .4060 | .4388 | .4298 | 4280 | 4536 | 12.54 | | DETROIT | .4031 | 4164 | .4157 | 4299 | £ 9 | 4427 | 4.46 | | FORTH WORTH | .4238 | .4453 | .4324 | .4332 | | 4655 | 2,67 | | FRESNO | .4534 | .4546 | .4641 | .4785 | 4768 | 4180 | 19.06 | | GARY | .3510 | .3713 | .3620 | .3919 | .3939 | | 11.72 | | GRAND RAPIDS | .4019 | .38A3 | .4145 | .4224 | .4540 | .4490 | 1.19 | | HARRISHURG | .4032 | .3943 | .3954 | .3917 | .4067 | .4560 | 6.82 | | HARTFORD | .4347 | .4349 | .4355 | .4592 | .4773 | .4643 | 11.84 | | HONOLULU | .4461 | .4712 | .4494 | .4708 | .4721 | 4989 | 7.13 | | HOUSTON | .4540 | .4472 | .4645 | .4615 | .4725 | .4863 | 9.84 | | INDIANAPOLIS | .4262 | .4342 | .4340 | .4350 | .4398 | .4681 | -2.63 | | JACKSONVILLE | .4442 | .4296 | .4468 | .4354 | .4868 | . 4325 | 15.42 | | JERSEY CITY | 3508 | | ,3886 | .3868 | .4163 | .4049 | 8.00 | | KANSAS CITY | .4216 | .4270 | .4156 | .4298 | .4345 | .4553 | | | KNOXVILLE | .4353 | .4669 | .4585 | .4801 | .4684 | .4256 | -2.23 | | LANCASTER | .4539 | .4133 | .4123 | .4095 | .4244 | .4290 | -5.48 | | LANSING | .4112 | .4028 | .4304 | .4171 | .4169 | .4010 | -2.48 | | LOS ANGELES | .4314 | .4370 | .4483 | .4550 | ,4736 | .4653 | 7.87 | | LOUISVILLE | .4256 | .4219 | .4420 | ,4196 | .4402 | 4088 | -3.94 | | MIAMI | .4673 | .4775 | .5008 | .5321 | .5549 | .5028 | 16.14 | | HILMAUKEE | .3706 | .4100 | .4114 | .4105 | .4396 | .4447 | 19.98 | TABLE 1 (CONT.) | SMSA | 1959 | 1961 | 1963 | 1965 | 1967 | 1969 | *CHNG | |-----------------|---------|---------|---------|---------|---------|-----------------|--------| | MINN ST. PAUL | .4188 | .4270 | .4281 | .4300 | .4547 | .4563 | 8,93 | | MOBILE | 3909 | 4351 | 4528 | 4693 | .4358 | 4298 | 9.95 | | NASHVILLE | 4531 | 4427 | .4947 | 4771 | 4679 | 4442 | -1.98 | | NEW HAVEN | 4303 | 4300 | 4398 | 4112 | .4462 | 4596 | 6,81 | | NEW ORLEANS | 4729 | 4446 | 4643 | 4584 | 4497 | 4882 | 3.24 | | NEW YORK CITY | 4746 | 4707 | 4665 | 4796 | 4979 | 4941 | 4.11 | | NEWARK | 4311 | 4500 | 4489 | 4653 | 4658 | 4868 | 12.93 | | NORFOLK | 4133 | 4161 | 4440 | 4246 | 4211 | 4210 | 1.87 | | OKLAHOMA CITY | | - | - | 4750 | 4681 | 4862 | 10,46 | | - | .4401 | .4514 | .0347 | | - | | 9,06 | | OMAHA | .4193 | .4120 | .4265 | .4535 | .4536 | .4573 | | | PATERSON | .4156 | .4310 | .4140 | .4442 | .4588 | .4669 | 12.33 | | PERURIA | .3925 | .4237 | .4069 | .4079 | .4225 | .4480 | 14.15 | | PHILADELPHIA | .4165 | .4141 | .4227 | .4315 | .4475 | .4536 | 8.90 | | PHOENIX | .4702 | .4435 | .4479 | .4653 | .4459 | .4784 | 1.76 | | PORTLAND, ORE | .4245 | .4237 | .4159 | .4336 | . 4681 | .4547 | 7,12 | | PROVIDENCE | .4164 | .4147 | .4125 | .4323 | .4557 | · , 4500 | 8.08 | | PEADING | .4376 | .4177 | .3832 | .3829 | ,4095 | .4438 | 1.42 | | RICHMOND | 4149 | .4289 | .4590 | _4388 | .4719 | .4502 | 8,51 | | ROCHESTER, NY | 4196 | .4113 | 4256 | .4429 | .4497 | .4348 | 3,62 | | SACRAMENTO | 3912 | .3820 | .4110 | .4360 | .4242 | .4704 | 20.27 | | ST LOUIS | 4137 | .4147 | .4240 | .4253 | .4470 | 4374 | 5.72 | | SALT LAKE CT | 4333 | ,4136 | 4297 | .4469 | 4528 | 4565 | 5,35 | | SAN ANTONIO | 4458 | 4587 | 4704 | 4834 | .4937 | 4625 | 3.77 | | SAN BERNADINO | 3931 | 4230 | 4314 | .4311 | .4242 | .4624 | 17.64 | | SAN DIEGO | 4023 | 4238 | 4541 | 4495 | 4319 | .4363 | 8,45 | | SAN FRANCISCO | 4232 | 4245 | 4400 | 4504 | 4606 | 4512 | 6.60 | | SAN JOSE | 4014 | 4296 | 3843 | 4103 | 4112 | 4169 | 3.87 | | SEATTLE | 3949 | 4037 | 3981 | 4229 | 4184 | 4397 | 11,34 | | | | • | • | | 4474 | .4204 | -11.18 | | SHREVEPORT | .4733 | .4849 | .4459 | .4798 | | | 10.72 | | SPRINGFIELD, MA | .3877 | .4059 | .4088 | .4152 | .4281 | .4293 | 12,60 | | SYPACUSE | .3979 | .4087 | .4162 | .4244 | .4159 | .4480 | | | TACOMA | ,4006 | .3891 | .397 | .4169 | .4121 | .4418 | 10.23 | | TAMPA | .4620 | .4584 | .4628 | .4584 | .4661 | .4734 | 2.48 | | TOLEDO | .4206 | .4223 | .3993 | .4293 | .4378 | .4440 | 5.56 | | TULSA | .4301 | .4640 | .4715 | .4518 | .4698 | .4005 | -6.89 | | UTICA ROME | 3936 | 3898 | .4096 | .3945 | .4312 | .4000 | 1.62 | | NCTDNIHZAW | 4376 | .4211 | .4387 | .4689 | .4769 | 4715 | 7.74 | | WICHITA | . 4022 | 4177 | .4255 | .4347 | .4451 | .4314 | 7.26 | | WILKSBARRE | 4182 | .4254 | .3833 | .3912 | .4004 | .3988 | -4.63 | | WILMINGTON | 4938 | 4926 | 4921 | .5319 | .5043 | 4854 | -1.71 | | WORCESTER | 4175 | 4410 | 4179 | .4387 | 4731 | 4535 | 8,62 | | YOUNGSTOWN | 3731 | 3703 | 3764 | 3431 | 3964 | 4183 | 12,12 | | PITTSBURGH | 4276 | 4305 | 4559 | 4260 | .4387 | 4357 | 1.42 | | mean | .4228 | .4270 | .4285 | .4371 | .4465 | .4486 | 6.54 | | (Std. ev.) | (.0353) | (.0269) | (.0279) | (.0307) | (.0278) | (.0261) | (7.37) | | (ULU: CV:) | (.0333) | (.020) | (.02/) | (.0307) | (104/0) | (.0401) | (1.31) | 6 TABLE 2 : MEAN INCOMES FOR EACH SMSA | ABME | 1959 | 1961 | 1963 | 1965 | 1967 | 1969 | *CHNG | |--------------|--------------|--------------|-------|------|------|------|-------| | AKRON | 6065 | 590 7 | 6475 | 7452 | 7682 | 8847 | 45,85 | | ALBANY | 5270 | 5342 | 5868 | 6578 | 7377 | 8314 | 57.75 | | ALLENTOWN | 4976 | 5647 | 5879 | 6729 | 6971 | 8195 | 64.69 | | ATLANTA | 5279 | 5695 | 6214 | 6896 | 7632 | 8642 | 63,68 | | BAKERSFIELD | 5855 | 5548 | 6106 | 6447 | 7134 | 8036 | 37,25 | | BALTIMORE | 5315 | 5222 | 5896 | 6758 | 7166 | 8087 | 52,16 | | REAUMONT | 5118 | 5544 | 6027 | 6624 | 7162 | 7283 | 42.29 | | BIRMINGHAM | 5086 | 5457 | 5772 | 6320 | 6857 | 7750 | 52.38 | | BOSTON | 5315 | 5584 | 6050 | 6532 | 7592 | 8579 | 51.41 | | BRIDGEPORT | 5692 | 5765 | 6585 | 6761 | 8342 | 9215 | 61,90 | | BUFFALO | 5658 | 5631 | 6081 | 6697 | 7508 | 8157 | 44.16 | | CANTON | 5429 | 5797 | 6177 | 6984 | 7270 | 7628 | 40.50 | | CHARLOTTTE | 5200 | 5739 | 5889 | 7120 | 7792 | 8056 | 54.90 | | CHATTANOOGA | 4718 | 4958 | 5179 | 5860 | 6071 | 7431 | 57.51 | | CHICAGO | 6110 | 6471 | 6800 | 7505 | 8329 | 9284 | 51.94 | | CINCINNATI | 5657 | 5718 | 6195 | 6673 | 7194 | 8297 | 46.66 | | CLEVELAND | 5969 | 6192 | 6627 | 7436 | 8039 | 9100 | 52,45 | | COLUMBUS, O | 5350 | 5977 | 6258 | 6699 | 7723 | 7947 | 48.53 | | DALLAS | 5680 | 5956 | 6274 | 6738 | 7619 | 9085 | 59.95 | | DAVENPORT | 5877 | 5900 | 6495 | 6602 | 7320 | 7467 | 27.04 | | DAYTON | 5878 | 6057 | 6553 | 7463 | 7942 | 8587 | 46.08 | | DENVER | 5689 | 6309 | 6469 | 6711 | 7572 | 8513 | 49.62 | | DESMOINES | 5509 | 6205 | 5987 | 6944 | 7401 | 8704 | 58.00 | | DETROIT | 5976 | 6055 | 6828 | 7591 | 8409 | 9260 | 54.94 | | FORTH WORTH | 5235 | 5414 | 5765 | 6105 | 7381 | 7936 | 51,58 | | FRESNO | 4429 | 5205 | 5443 | 6141 | 6593 | 6664 | 50.47 | | GARY | 5602 | 5969 | 6593 | 7048 | 7155 | 8493 | 51,61 | | GRAND RAPIDS | 5460 | 5876 | 5924 | 6531 | 7251 | 8107 | 48,49 | | HARRISBURG | 4975 | 5018 | 5633 | 6567 | 6975 | 8537 | 71.61 | | HARTFORD | 5948 | 6415 | 7140 | 7488 | 8008 | 8875 | 49.21 | | HONOLULU | 5234 | 6041 | 6027 | 6723 | 7545 | 8470 | 61,81 | | HOUSTON | 5631 | 6147 | 6275 | 6808 | 7856 | 8522 | 51.33 | | INDIANAPOLIS | 5681 | 5807 | 6305 | 6891 | 7872 | 8130 | 43.09 | | JACKSONVILLE | 4806 | 5069 | 5254 | 6395 | 6609 | 7548 | 57.06 | | JERSEY CITY | 4825 | 5220 | 5520 | 6032 | 6263 | | 63,12 | | KANSAS CITY | 5535 | 5910 | 6416 | 7003 | 7533 | 8443 | 52,53 | | KNOXVILLE | 4545 | 4896 | 5237 | 5934 | 6503 | 7838 | 72.45 | | LANCASTER | 4676 | 4923 | 5636 | 6501 | 6825 | 7531 | 61.05 | | LANSING | 5141 | 5961 | 6399 | 7069 | 7591 | 9393 | 82.70 | | LOS ANGELES | 6163 | 6524 | 6897 | 7480 | 8042 | 8786 | 42,55 | | LOUISVILLE | 5213 | 5464 | 5869 | 6604 | 7108 | 8417 | 61.45 | | HIAMI | 5138 | 5333 | 5370 | 5911 | 6560 | 7701 | 49.88 | | MILWAUKEE | 597 7 | 5934 | 6328 | 7235 | 7718 | 8372 | 40.06 | | WICHMONE | 7711 | J 7 7 W | 113EV | | | | | TABLE 2 (CONT.) | SMSA | 1959 | 1961 | 1963 | 1965 | 1967 | 1969 | *CHNG | |-----------------|---------------------------------------|-------|--------------|--------------|--------------|-------|--------| | MINN ST. PAUL | 5663 | 6172 | 6413 | 7052 | 7719 | 8761 | 54.69 | | MOBILE | 5092 | 4640 | 5077 | 5749 | 6327 | 7120 | 39.84 | | NASHVILLE | 5137 | 5330 | 5254 | 5950 | 6880 | 8377 | 63,05 | | NEW HAVEN | 5571 | 5865 | 6358 | 7319 | 8014 | 8823 | 58,38 | | NEW ORLEANS | 5123 | 5261 | 5530 | 6259 | 7395 | 7933 | 54.65 | | NEW YORK CITY | 6016 | 6447 | 6895 | 7539 | 8542 | 9441 | 56.91 | | NEWARK | 6244 | 6406 | 6883 | 7753 | 8566 | 9525 | 52.55 | | NORFOLK | 4764 | 4769 | 5337 | 5905 | 6563 | 7548 | 58.45 | | OKLAHOMA CITY | 5201 | 5327 | 5841 | 5842 | 7129 | 7633 | 46.75 | | OMAHA | 5200 | 5922 | 5916 | 6201 | 7400 | 7670 | 47.50 | | PATERSON | 6100 | 6606 | 7209 | 7752 | 8884 | 9351 | 53.28 | | PERORIA | 5683 | 5875 | 6485 | 6840 | 7526 | 8115 | 42.77 | | PHILADELPHIA | 5423 | 5748 | 6183 | 6799 | 7458 | | 53.41 | | PHOENIX | 5201 | 5680 | 5956 | 6109 | | 8319 | 49.00 | | PORTLAND, ORE | 5 502 | 5623 | 6198 | 6878 | 7109
7249 | 7750 | | | PROVIDENCE | 4666 | 5145 | | | | 826% | 50.19 | | READING | 4872 | | 5511 | 6044 | 6552 | 6996 | 49.94 | | RICHMOND | 4995 | 5002 | 5585
5708 | 6313 | 6895 | 7557 | 55.10 | | ROCHESTER, NY | | 5878 | 5708 | 7198 | 7468 | 8028 | 60.73 | | SACRAMENTO | 6147 | 6409 | 6563 | 6939 | 8190 | 9219 | 49.97 | | ST LOUIS | 606 0 | 6730 | 6789 | 7516 | 7693 | 8398 | 38.59 | | SALT LAKE CT | 5648 | 5987 | 6221 | 6938 | 7749 | 3698 | 53,99 | | SAN ANTONIO | 5422 | 5614 | 5968 | 6303 | 6912 | 7593 | 40.03 | | | 4627 | 4767 | 5065 | 5487 | 6565 | 7317 | 58.14 | | SAN BERNADING | 5201 | 5467 | 6051 | 6714 | 7106 | 7434 | 42.92 | | SAN DIEGO | 6121 | 5920 | 5878 | 6444 | 7582 | 8506 | 34.05 | | SAN FRANCISCO | 6295 | 6779 | 6965 | 7622 | 8292 | 9051 | 43.77 | | SAN JOSE | 6363 | 6847 | 7892 | 7649 | 8726 | 10139 | 59.34 | | SEATTLE | 6028 | 6419 | 6878 | 7348 | 8347 | 9103 | 51.00 | | SHREVEPORT | 5539 | 5087 | 5712 | 5920 | 6446 | 7667 | 38.41 | | SPRINGFIELD, MA | 5455 | 5473 | 5731 | 653 0 | 6981 | 8365 | 53.34 | | SYRACUSE | 5203 | 5584 | 5750 | 6564 | 7410 | 7427 | 42.73 | | TACOMA | 5296 | 5688 | 5974 | 6167 | 7537 | 8173 | 54.32 | | TAMPA | 4555 | 4587 | 5026 | 5356 | 6041 | 6920 | 51.92 | | TOLEDO | 5659 | 5836 | 6494 | 6706 | 7468 | 8559 | 51.24 | | TULSA | 5401 | 5776 | 5975 | 6970 | 7051 | | 58.85 | | UTICA ROME | 4867 | 4986 | 5640 | 6453 | 6841 | 7759 | 59.42 | | WASHINGTON | 6132 | 6616 | 7120 | 7920 | 8466 | 9897 | 61.39 | | WICHITA | 5436 | 5894 | 5895 | 6372 | 6731 | 7830 | 44.04 | | WILKSBARRE | 3999 | 4225 | 4659 | 5199 | 5681 | 6703 | 67.58 | | WILMINGTON | 6389 | 7004 | 7196 | 8694 | 8324 | 9015 | 41.10 | | WORCESTER | 4780 | 5321 | 5707 | 6133 | 6509 | 7646 | 59,95 | | YOUNGSTOWN | 5235 | 5612 | 6019 | 7183 | 6860 | 7899 | 50.88 | | PITTSBURGH | 5568 | 5562 | 6195 | 6917 | 7199 | 8126 | 45.95 | | MEAN | 5428 | 5718 | 6098 | 6723 | | 8245 | 52.26 | | (Std. Dev.) | (498) | (552) | (578) | (621) | (659) | (708) | (9.03) | | | · · · · · · · · · · · · · · · · · · · | | | (0=1) | (033) | (700) | (2.03) | TABLE 3: INCOME LEVEL AND INCOME DISTRIBUTION FOR SMSA SAMPLE AND FOR UNITED STATES, 1959-1969 | SMSA SATLE
Gimi coefficien | | | | SAMPLE
Income | U.S.
Gini Coefficient | U.S.
Mean Income | | |-------------------------------|--------|-----------------------|--------|-----------------------|--------------------------|---------------------|--| | Year | Mean* | Standard
Deviation | Mear* | Standard
Deviation | | | | | 1959 | .4228 | .0353 | \$5428 | \$498 | .4457 | \$5062 | | | 1961 | .4270 | .0269 | 5718 | 552 | .4462 | 5364 | | | 1963 | .4285 | .0279 | 6098 | 578 | .4496 | 5767 | | | 1965 | .4371 | .0307 | 6723 | 621 | .4583 | 6350 | | | 1967 | . 4465 | .0278 | 7368 | 659 | .4652 | 7045 | | | 1969 | . 4486 | .0261 | 8245 | 708 | .4669 | 7959 | | | 959-1969 | | | | | | | | | percent
change | 6.1% | | 51.9% | | 4.8% | 57.2% | | ^{*} For each year, this is the unweighted average of the 86 Gini coefficients (mean incomes) displayed in Table 1 (Table 2). This trend toward greater inequality is significant for both series. The average mean income of the SMSA sample exceeds the mean income of the U.S. in each of the six years. Table 3 reveals that average SMSA income grew at a slower rate, 51.9 percent, than mean U.S. income, 57.2 percent. For each SMSA, a time trend was regressed on the Gini coefficient for the six data points in the 1959-1969 period. It was hypothesized that although the trend in the sample average and the U.S. aggregate Gini coefficients were similar (as shown in Table 3), individual SMSAs might have experienced divergent trends. Of the 86 time trends, 79 were positive (fifty of these were significant) and 7 were negative (only one of these was significant). While the degree of inequality varies widely among the SMSAs in any given year, the trend in inequality was similar for the great majority. The size of the trend, however, does vary across the SMSAs. Table 4 presents the Giai coefficient and mean income for 1959 and 1969 and the percentage change in each for the entire SMSAs apple and for selected subsamples. The subsamples are based on the tails of the distribution for the 1959 mean income, 1959 Gini coefficient, and the changes in the Gini coefficient and mean income. Because the regression coefficient for the trend in the Gini coefficient (mean income) is highly correlated with the percentage change in the 3ni (mean), and because the percentage change is more easily 10 TABLE 4: INCOME LEVEL AND INCOME DISTRIBUTION FOR SELECTED SUBSAMPLES | | 1959 | 1969 | 1959 | 1969 | %Chng | %Chng | |----------------------------|--------|--------|---------|---------|---------|---------| | | Gini | Gini | Mean | Mean | Gini | Mean | | N= 86, ALL SMSAs | .423 | .449 | 5428.0 | 8244.9 | 6.54 | 52.26 | | | (.035) | (.026) | (498.4) | (708.2) | (7.37) | (9.03) | | Poorest 10 in 1959 | .454 | .441 | 4576.3 | 7259.9 | -1.69 | 58.75 | | | (.061) | (.023) | (229.3) | (411.3) | (9.59) | (7.21) | | Richest 10 in 1959 | .428 | .457 | 6207.0 | 9247.7 | 7.03 | 48.99 | | | (.026) | (.023) | (108.5) | (547.5) | (4.30) | (8.54) | | 10 Most Equa l 1959 | .371 | .430 | 5588.4 | 8205.1 | 16.05 | 47.22 | | | (.015) | (.025) | (430.3) | (626.4) | (5.98) | (11.19) | | 10 Most Unequal in | .484 | .477 | 5274.5 | 7905.0 | -0.74 | 50.14 | | 1959 | (.049) | (.033) | (630.7) | (871.0) | (11.09) | (6.22) | | 10 Largest Trends | .457 | .422 | 4847.2 | 7777.6 | -6.88 | 60.75 | | Toward Equality | (.060) | (.020) | (476.0) | (837.1) | (6.84) | (12.01) | | 10 Largest Trends | .383 | .454 | 5586.1 | 8032.9 | 18.34 | 44.24 | | Toward Inequality | (.034) | (.040) | (428.7) | (484.0) | (4.25) | (9.48) | | 10 Slowest Income | .414 | .456 | 5776.6 | 7950.6 | 10.94 | 37.69 | | Growth | (.042) | (.022) | (394.7) | (559.5) | (11.64) | (4.26) | | 10 Fastest Income | .413 | .428 | 4980.8 | 8324.4 | 3.95 | 67.26 | | Growth | (.033) | (.033) | (457.8) | (759.6) | (6.97) | (6.64) | NOTE: Standard deviations appear in parentheses below sample means. interpreted than the size of the regression coefficient, the percentage change is used to examine the size of the trend in Table 4.10 Table 4 reinforces the neoclassical view of the convergence of interregional income differentials. The convergence of <u>levels</u> of income has been a familiar focus of study; ... a state that has previously achieved a high per capita income may have great difficulty in achieving a further increase of the same percentage size as a low-income state particularly when the larger absolute increases in the high-income states may be smaller percentage increases ... The very notion of the allocation of scarce resources should lead us to expect a comprehensive measure such as per capita income, to regress toward the mean (Hanna, 1957, p. 133). Table 4 also reveals a convergence in the <u>distribution</u> of income, a result not previously examined in the literature. Mean incomes in the poorest SMSAs grew by 58.75 percent while incomes in the richest grew by only 48.99 percent. The poorest SMSAs also show a slight trend toward greater equality (-1.69 percent) while the richest moved toward greater inequality (7.03 percent). The most equal SMSAs in 1959 exhibit a large trend (16.05 percent) toward greater inequality while inequality in the most unequal remained almost constant (-0.74 percent). Thus, while incomes in the poorest SMSAs were 74 percent of those in the richest in 1959 (4576.3/6207.0), they had risen to 79 percent by 1969 (7259.9/9247.7). The convergence in income inequality was even creater. The most unequal in 1959 had Gini coefficients that were 30 percent greater than those in the most equal SMSAs (.484/.371), but by 1969 this differential had been reduced to 11 percent (.477/.430). Movements toward greater equality are associated with higher than average increases in income, while movements toward greater inequality are associated with smaller than average increases in income. In the SMSAs where inequality decreased by the largest amount (-6.88 percent), incomes grew by 60.75 percent, while in those where inequality greatly increased (18.34 percent), incomes grew by only 44.24 percent. Similarly, those with the slowest income growth rates (37.69 percent) had greater than average increases in inequality (10.94 percent), while those which experienced rapid increases in income (67.26 percent) had smaller increases in inequality (3.95 percent). During this period, greater equality is associated with faster income growth; there does not seem to be a trade-off between equity and efficiency. The convergence hypothesis and the relationship between the change in income inequality and the change in mean income can be tested within a regression framework. As mentioned earlier, a time trend was regressed on both the Gini coefficient and the mean income for each of the 86 SMSAs, so that $$Gini_t = a_1 + b_1$$ Trend $Mean_t = a_2 + b_2$ Trend $For_t = 1959$, 1961, 1963, 1965, 1967, 1969. The regression coefficients for the time trends were then expressed as a percentage of the average Gini coefficient and mean income, GINITREND = $$\frac{(b_1 \cdot 100)}{\frac{1}{6} \cdot \sum_{t=1}^{6} Gini_{t}}$$ MEANTREND = $$\frac{(b_2 \cdot 100)}{\frac{1}{6} \cdot \sum_{t=1}^{6} Mean_t}$$. 11 Thus, GINITREND (MEANTREND) is the average percentage change in the gini coefficient (mean income) per two-year period. GINITREND and TABLE 5: REGRESSION RESULTS FOR TRENDS IN THE LEVEL AND DISTRIBUTION OF INCOME | | (1) MEANTREND | (2) GINITREND | |--|-------------------------------|-----------------------| | Constant | 11.39 | 10.71 | | Gini 59 (X1000) | | 0205
(6.59)* | | Mean 59 (\$000's) | -0.651
(3.01)* | 0.373
(1.64) | | MEANTREND . | | -0.343
(3.14)* | | Northeast | 1.201
(3.86)* | 0.195
(0.58) | | South | 0.905
(2.8 9)* | 0.201
(0.62) | | Northcentral | 0.367
(1.22) | 0.205
(0.65) | | R ²
Mean of dependent variable | .7747
8 .5 3 | .537
1. 3 1 | ^{*} Denotes significance at the 5% level; t-statistics appear in parentheses below the regression coefficients. Number of observations is 86 for each regression. MEANTREND are the dependent sariables in the two regressions shown in Table 5. The two equations are modeled recursively so that the level of income and its trend affect the degree of inequality, but inequality does not affect the income level or the income trend. Equation 1 shows that convergence in mean incomes occurred between 1959 and 1969. An increase of \$1000 in the 1959 mean income of an SMSA lowers its MEANTREND by 0.651 percent. Differences in regional growth rates also support the convergence hypothesis. SMSAs in the two highest income regions in 1959, the Pacific and Northcentral (with average mean incomes of \$5658 and \$5641), grew at a slower rate than those in the other two regions, the Northeast and the South (with average mean incomes of \$5316 and \$5197). Equation 2 shows significant convergence in Gini coefficients— an increase of .010 in the 1959 Gini results in a decrease of 0.205 percent in the GINITREND. Faster rates of income growth holding constant the 1959 mean income significantly lower GINITREND. A 1 percent increase in MEANTREND lowers the GINITREND by 0.343 percent. These results are consistent with a model in which poorer residents of lower-income metropolitan areas migrate to higher-income SMSAs. The average income of the destination SMSA then falls and its level of inequality rises; in the SMSA of origin, average income levels increase and inequality falls. This pattern conflicts with the conventional notion that higher-educated, more-skilled residents of depressed areas migrate to more prosperous SMSAs. However, the contradiction may arise from the fact that the data analyzed here refer to the largest SMSAs and, thus, do not present a comprehensive view of migrating streams. ## IV. Summary This paper has presented a time series on the income level and income distribution for a sample of SMSAs. Several interesting results have been described. First, the level and distribution of income vary widely among the SMSAs. Second, a majority of the SMSAs experienced an increase in inequality during the 1959-1969 period. Third, differences among the SMSAs in both income level and degree of income inequality narrowed. Finally, higher rates of growth of income were associated with smaller increases in inequality. While this paper has been descriptive, it is hoped that the data set will be useful for testing theories that relate the income level and income distributions of metropolitan areas to their urban problems. For example, can increases in SMSA crime rates or the incidence of urban riots or urban fiscal problems be explained by changes in the level and distribution of metropolitan area incomes? The data should also be useful for testing models of interregional migration. #### NOTES Farbman (1975) analyzes metropolitan area income distributions for 1959, but his cross-sectional sample is unsuited for examining the trend in the level and distribution of income. 2 The smallest SMSA in the sample has a 1969 population of 266,000. ³Budd (1970) compares the IRS data on the size distribution of income with that from other sources. 4Persons accounted for on tax returns—the sum of all exemptions for taxpayers and dependents less the double exemptions of the elderly and the blind—as a percentage of the total population ranged from 93 to 97 percent during the 1959—1969 period. ⁵The Gini coefficient ranges from unity, perfect inequality, to zero, perfect equality. Gastwirth (1972) discusses the measurement of the Gini coefficient from IRS data. The method used in this paper produces lower bound estimates of the Gini coefficient since the class mean is assigned to all tax returns in each income interval. The number of income intervals for each year were: 15 for 1959 and 1961; 16 for 1963, 1965 and 1967; and 13 for 1969. The percentage change in the variables for all tables is defined as: $$(x_{1969} - x_{1959}/x_{1959}) \cdot 100.$$ 7 These are the arithmetic means for the six Gini coefficients and mean incomes shown in Tables 1 and 2. ⁸The regressions for the U.S. are based on annual (not biennial) observations; t-statistics appear below the regression coefficients in parentheses. A similar regression was performed for each SMSA in which the mean current income was the dependent variable. The direction of the trend, positive and significant for all SMSAs, is not of interest. However, the size of the trend varies, and is discussed below. The simple correlation coefficient between the regression coefficient from the Gini regression and the percentage change in the Gini is .95; for the regression coefficient from the mean regression and the percentage change in the mean it is .96. A positive GINITREND represents an increase in inequality; a negative, a decrease. #### REFERENCES - Bateman, W. and Hochman, H. 1971. "Social Problems and the Urban Crisis: Can Public Policy Make a Difference?" American Economic Review 61 (May). - Budd, E. C. 1970. "Postwar Changes in the Size Distribution of Income in the U.S." <u>American Economic Review</u> 60 (May). - Farbman, M. 1975. "The Size Distribution of Family Income in U.S. SMSAs, 1959." Review of Income and Wealth. Sexies 21 (June). - Gastwirth, J. L. 1972. "The Estimation of the Lorenz Curve and Gini Index." Review of Economics and Statistics 54 (August). - Hanna, F. 1957. "Analysis of Interstate Income Differentials: Theory and Practice." in Regional Income. Studies in Insome and Wealth, Volume 21. New York: National Suresu of Sconomic Research. - Smolensky, E. and Somery, J. 1972. "The Urban Problem as an Exercise in the Theory of Efficient Transfers." Regional Science Perspectives 2. - U.S. Department of the Treasury. Internal Revenue Service. Annually. Statistics of Income, Individual Income Tax Returns. Washington: U.S. Government Printing Office.